Information Theory for Molecular Communication in Nanonetworks

Massimiliano Pierobon

Georgia Institute of Technology
maxp@gatech.edu
Towards an Information Theory for Molecular Communication

- **Physical Channel Model**
 - How information is transmitted, propagated and received when a molecular carrier is used

- **Noise Representation**
 - How can be physically and mathematically expressed the noise affecting information transmitted through molecular communication

- **Information Encoding/Decoding**
 - How can information be encoded for a proper transmission using molecular communication

Molecular Channel Capacity
Molecule Diffusion Communication: Exchange of information encoded in the concentration variations of molecules.
Objective of the Physical Channel Model

Derivation of DELAY and ATTENUATION

as functions of the frequency and the transmission range

- Non-linear attenuation with respect to the frequency
- Distortion due to delay dispersion
Modeling Challenges for the Physical Channel

- **Transmitter**
 - How chemical reactions allow the modulation of molecule concentrations as transmission signals?

- **Propagation**
 - How the “particle diffusion” controls the propagation of modulated concentrations

- **Receiver**
 - How chemical reactions allow to sense the modulated molecule concentrations from the environment and translate them into received signals
Molecule Diffusion Channel Model

Transmitter Model

- Design of a chemical actuator scheme (chemical transmitting antenna)

- Analytical modeling of the chemical reactions involved in an actuator

- Signal to be transmitted \rightarrow Modulated concentration
Molecule Diffusion Channel Model

Propagation Model

- Solution of the diffusion physical laws (FICK's First and Second Laws (1855), Relativistic Diffusion Process) in the presence of an external concentration modulation

- Modulated concentration → Space-time concentration evolution
Molecule Diffusion Channel Model

Receiver Model

- Design of a chemical receptor scheme (chemical receiving antenna)

- Analytical modeling of the chemical reactions involved in a receptor

- Propagated modulated concentration \rightarrow Received signal
Conclusions

- A mathematical model for the physical molecular diffusion channel

- Non-linear channel attenuation both in frequency and Tx-Rx range

- Channel Tx-Rx delay varies in frequency → dispersion phenomena when the signal propagates
Current Research

- Noise → incorporated into the channel model

- Study of possible noise sources:
 - When information modulates the molecule concentration
 - When information is encoded into molecule chemical features (e.g., type, structure, polarization, etc.)
Noise Representation
Molecule concentration modulation

- Diffusion Process
- Chemical change
- Brownian motion
- Turbulence
- Information mixing

Nano mac 1
Nano mac 2
Nano mac 3

same molecule as
Noise Representation
Molecule chemical feature encoding

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0110</td>
</tr>
<tr>
<td></td>
<td>0111</td>
</tr>
</tbody>
</table>

Extinction latency
Cross-symbol interference
Symbol usage desynchronizing
Information Encoding/Decoding

- **Concentration Modulation** (e.g. Ca^{2+} ion signaling)

- **Information Encoding Based on Chemical Features** (e.g. pheromone communication)

- **Encapsulation of Information Carriers** (e.g. DNA vesicle encapsulation, pollen/spores communication)
Future Research and Challenges

- Properly model all the noise sources
- Information encoding/decoding and modulation pattern
- Channel Capacity computation
- Channel multiple access problem
- Addressing issue (routing problem)
- Higher layers development
Thanks for your attention

“Information Theory for Molecular Communication in Nanonetworks”

Massimiliano Pierobon