Exploring the Scalability Limits of Communication Networks at the Nanoscale

Ignacio Llatser Martí
llatser@ac.upc.edu

Advisors: Eduard Alarcón Cot and Albert Cabellos-Aparicio

Master in Computer Architecture, Networks and Systems, Universitat Politècnica de Catalunya, 2011.
Nanonetworks
Nanotechnology is envisaged to allow the development of nanometer-scale machines

- **Nano-EM**
- **Biological**

Nanotechnology is envisaged to allow the development of nanometer-scale machines

- Nano-EM
- Biological

The capabilities of nanomachines are **constrained** by their limited detection/actuation range.

Nanonetworking is an emerging field studying communication among nanomachines.

The resulting nanonetworks will greatly **expand** the capabilities of a single nanomachine.
Current network protocols and techniques cannot be directly applied to communicate nanomachines.

Two main paradigms emerge:

- **Nano-electromagnetic** communication
- **Molecular** communication
Graphene-based nano-antennas (CNTs and GNRs) are envisaged to implement nano-EM communications. Due to the lower wave propagation speed in graphene, graphene-based nano-antennas radiate EM waves in the THz band.

Information is encoded inside **molecules**

- **Ca**\(^{2+}\)
- **DNA**
Molecules are sent among nanomachines

- Brownian motion
- Spontaneous diffusion

Applications of nanonetworks

- Wireless NanoSensor Networks (WNSN)
- Intrabody disease detection and cooperative drug delivery systems

Motivation of this thesis

How different will nanonetworks be from traditional electromagnetic networks?

We need a scalability theory for nanonetworks

- Study the performance metrics of the network
 - Throughput
 - Transmission delay
 - Energy consumption
 - ...

- When the network size is reduced to the nanoscale
Main contributions

- Scalability analysis of the **channel capacity** of electromagnetic nanonetworks

- **Characterization** (both analytically and by simulation) of the physical channel of diffusion-based molecular nanonetworks

- Scalability analysis of several **performance metrics** using a pulse-based modulation in the previous scenario
Scalability of the channel capacity of electromagnetic nanonetworks
Scalability of the channel capacity of EM nanonetworks

- Bandwidth \sim THz \rightarrow very high channel capacity

- Quantum effects in the nano-EM physical channel
 - Lower wave propagation speed
 \[v_p = \frac{1}{\sqrt{LC}} \]
 - Molecular absorption
 \[A_{\text{abs}} = \frac{1}{\tau} = e^{kd} \]
 - Molecular noise
 \[T_{\text{mol}} = T_0 (1 - \tau) = T_0 \left(1 - e^{-kd}\right) \]
 Only appears when signal is transmitted
How do these quantum effects affect the channel capacity at the nanoscale?

We particularize Shannon’s law for the frequency-selective nano-EM channel

\[
C = \max_{S(f): \int_B S(f) df \leq P_T} \int_B \log_2 \left(1 + \frac{S(f)}{A(f)N(f)} \right) df
\]
We obtain analytical expressions of the channel capacity as a function of Δ, d and P_T

\[
C_{nq} = \frac{c}{2 \log(2)\Delta} \log \left(1 + \frac{\Delta^3 P_T/d^2}{2 \pi^2 c N_0} \right)
+ \frac{\sqrt{c \Delta P_T/d^2}}{\log(2) \pi \sqrt{2 N_0}} \arctan \frac{\pi \sqrt{2 c N_0}}{\sqrt{\Delta^3 P_T/d^2}}
\]

\[
C_q = \frac{k_1}{2 \log(2) \sqrt{\Delta}} \log \left(1 + \frac{c^2 \Delta^{3/2} P_T/d^2}{2 \pi^2 N_0 k_1^3} \right)
+ \frac{c^4 \Delta \sqrt{P_T/d^2}}{\log(2) \pi \sqrt{2 N_0 k_1^3}} \arctan \frac{\pi \sqrt{2 N_0 k_1^3}}{\sqrt{P_T/d^2} c \Delta^{3/4}}
\]

Δ: nanomachine length
d: transmission distance
P_T: transmitted power
N_0: noise power spectral density
c: speed of light
k_1$: constant
We find the limits of the previous expressions when $\Delta \to 0$, $d \to 0$ and $P_T \to 0$

We derive the necessary conditions to keep the network feasible

- The transmission distance needs to scale proportionally to the nanomachine length: $d = \Theta(\Delta)$
- The scalability of the transmitted power P_T depends on whether quantum effects are present
Scalability of the transmitted power P_T as a function of the nanomachine size Δ.

\[P_{T_{\text{noq}}} = \Omega(\Delta) \]

\[P_{T_{\text{q}}} = \Omega(\Delta^{3/2}) \]

With quantum effects
Without quantum effects
Diffusion-based channel characterization in molecular nanonetworks
Diffusion-based channel characterization

- Transmitters encode information into the release pattern of molecules
- Emitted molecules move according to Brownian motion
 - Fick’s laws of diffusion
- Receivers measure the local concentration of molecules and decode the information

The diffusion-based molecular channel is very different from the traditional EM channel

- Bandwidth \sim kHz \rightarrow low channel capacity
- Long propagation delay
- Very energy efficient
- New sources of noise
 - Brownian motion
 - Molecules are discrete

We need to characterize this channel in order to study the scalability of diffusion-based molecular communication
We propose a pulse-based modulation scheme

\[c(r, t) = \frac{Q}{(4\pi D t)^{3/2}} e^{-r^2/4Dt} \]

- \(Q \): number of emitted molecules
- \(D \): diffusion coefficient
- \(r \): transmission distance
- \(t \): time
We find analytical expressions for the most relevant metrics from the communication standpoint.

- **Pulse delay**

 \[t_d = \frac{r^2}{6D} \]

- **Pulse amplitude**

 \[c_{max} = \left(\frac{3}{2\pi e} \right)^{3/2} \frac{Q}{r^3} \]

- **Pulse width**

 \[t_w = \frac{0.4501}{D} r^2 \]

Q: number of emitted molecules
D: diffusion coefficient
r: transmission distance
Diffusion-based channel characterization

The results are validated by simulation

Pulse delay

Pulse amplitude
Diffusion-based channel characterization

Pulse width

Transmission distance [nm] vs. Pulse width [ns]

Master in Computer Architecture, Networks and Systems, Universitat Politècnica de Catalunya, 2011.
Scalability of the performance metrics of the diffusion-based molecular channel compared to the wireless EM channel

<table>
<thead>
<tr>
<th>Metric</th>
<th>EM channel</th>
<th>Molecular channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse delay</td>
<td>$\Theta (r)$</td>
<td>$\Theta (r^2)$</td>
</tr>
<tr>
<td>Pulse amplitude</td>
<td>$\Theta (1/r^2)$</td>
<td>$\Theta (1/r^3)$</td>
</tr>
<tr>
<td>Pulse width</td>
<td>$\Theta (1)$</td>
<td>$\Theta (r^2)$</td>
</tr>
</tbody>
</table>
Conclusions and outcomes
Nanonetworks will greatly expand the range of applications of nanotechnology.

We lay the foundations of a scalability theory for nanonetworks:

- The use of graphene-based antennas gives electromagnetic nanonetworks a scalability advantage over traditional networks.
- The studied metrics in molecular nanonetworks scale worse than in wireless electromagnetic networks.
Research outcomes

4 papers

2 co-supervised master thesis

Iñaki Pascual, “NanoSim: Simulation Tool for Diffusion-based Molecular Communication in Nanonetworks”.

Master in Computer Architecture, Networks and Systems, Universitat Politècnica de Catalunya, 2011.
Exploring the Scalability Limits of Communication Networks at the Nanoscale

Ignacio Llatser Martí
llatser@ac.upc.edu

Advisors: Eduard Alarcón Cot and Albert Cabellos-Aparicio

Master in Computer Architecture, Networks and Systems, Universitat Politècnica de Catalunya, 2011.